X
تبلیغات
sciences about physics
sciences about physics
sciences about physics
HOME | Archive | E-mail


In the name of God, the compassionate, the merciful
Hi`my friend this is my weblog about physics and you can enjoy the articles and‌‌ news of physics around the world and if you are interested in helping me with your articles please send them to my e-mail m.koshbash@yahoo.com
Toolbox
Archive
Links
My last posts
Caregery of my weblog
Powered by

pro 1.1

Powered by
Blogfa.com
ANASA Astro Group
Black holes

Black Holes: What Are They?

Black holes are the evolutionary endpoints of stars at least 10 to 15 times as massive as the Sun. If a star that massive or larger undergoes a supernova explosion, it may leave behind a fairly massive burned out stellar remnant. With no outward forces to oppose gravitational forces, the remnant will collapse in on itself. The star eventually collapses to the point of zero volume and infinite density, creating what is known as a " singularity ". Around the singularity is a region where the force of gravity is so strong that not even light can escape. Thus, no information can reach us from this region. It is therefore called a black hole, and its surface is called the " event horizon ".

But contrary to popular myth, a black hole is not a cosmic vacuum cleaner. If our Sun was suddenly replaced with a black hole of the same mass, the Earth's orbit around the Sun would be unchanged. (Of course the Earth's temperature would change, and there would be no solar wind or solar magnetic storms affecting us.) To be "sucked" into a black hole, one has to cross inside the Schwarzschild radius. At this radius, the escape speed is equal to the speed of light, and once light passes through, even it cannot escape.

The Schwarzschild radius can be calculated using the equation for escape speed:

vesc = (2GM/R)1/2

For photons, or objects with no mass, we can substitute c (the speed of light) for Vesc and find the Schwarzschild radius, R, to be

R = 2GM/c2
 

If the Sun was replaced with a black hole that had the same mass as the Sun, the Schwarzschild radius would be 3 km (compared to the Sun's radius of nearly 700,000 km). Hence the Earth would have to get very close to get sucked into a black hole at the center of our Solar System.

If We Can't See Them, How Do We Know They're There?

HDE 226868

Since stellar black holes are small (only a few to a few tens of kilometers in size), and light that would allow us to see them cannot escape, a black hole floating alone in space would be hard, if not impossible, to see. For instance, the photograph above shows the optical companion star to the (invisible) black hole candidate Cyg X-1.

However, if a black hole passes through a cloud of interstellar matter, or is close to another "normal" star, the black hole can accrete matter into itself. As the matter falls or is pulled towards the black hole, it gains kinetic energy, heats up and is squeezed by tidal forces. The heating ionizes the atoms, and when the atoms reach a few million Kelvin, they emit X-rays. The X-rays are sent off into space before the matter crosses the Schwarzschild radius and crashes into the singularity. Thus we can see this X-ray emission.

Binary X-ray sources are also places to find strong black hole candidates. A companion star is a perfect source of infalling material for a black hole. A binary system also allows the calculation of the black hole candidate's mass. Once the mass is found, it can be determined if the candidate is a neutron star or a black hole, since neutron stars always have masses of about 1.5 times the mass of the Sun. Another sign of the presence of a black hole is its random variation of emitted X-rays. The infalling matter that emits X-rays does not fall into the black hole at a steady rate, but rather more sporadically, which causes an observable variation in X-ray intensity. Additionally, if the X-ray source is in a binary system, and we see it from certain angles, the X-rays will be periodically cut off as the source is eclipsed by the companion star. When looking for black hole candidates, all these things are taken into account. Many X-ray satellites have scanned the skies for X-ray sources that might be black hole candidates.

Cygnus X-1 (Cyg X-1) is the longest known of the black hole candidates. It is a highly variable and irregular source, with X-ray emission that flickers in hundredths of a second. An object cannot flicker faster than the time required for light to travel across the object. In a hundredth of a second, light travels 3,000 kilometers. This is one fourth of Earth's diameter! So the region emitting the X-rays around Cyg X-1 is rather small. Its companion star, HDE 226868 is a B0 supergiant with a surface temperature of about 31,000 K. Spectroscopic observations show that the spectral lines of HDE 226868 shift back and forth with a period of 5.6 days. From the mass-luminosity relation, the mass of this supergiant is calculated as 30 times the mass of the Sun. Cyg X-1 must have a mass of about 7 solar masses, or else it would not exert enough gravitational pull to cause the wobble in the spectral lines of HDE 226868. Since 7 solar masses is too large to be a white dwarf or neutron star, it must be a black hole.

Diagram of Cygnus X-1 system

However, there are arguments against Cyg X-1 being a black hole. HDE 226868 might be undermassive for its spectral type, which would make Cyg X-1 less massive than previously calculated. In addition, uncertainties in the distance to the binary system would also influence mass calculations. All of these uncertainties can make a case for Cyg X-1 having only 3 solar masses, thus allowing for the possibility that it is a neutron star.

Nonetheless, there are now about 20 binaries (as of early 2009) for which the evidence for a black hole is much stronger than in Cyg X-1. The first of these, an X-ray transient called A0620-00, was discovered in 1975, and the mass of the compact object was determined in the mid-1980's to be greater than 3.5 solar masses. This very clearly excludes a neutron star, which has a mass near 1.5 solar masses, even allowing for all known theoretical uncertainties. The best case for a black hole is probably V404 Cygni, whose compact star is at least 10 solar masses. With improved instrumentation, the pace of discovery has accelerated, and the list of dynamically confirmed black hole binaries is growing rapidly.

What About All the Wormhole Stuff?

Unfortunately, wormholes are more science fiction than they are science fact. A wormhole is a theoretical opening in space-time that one could use to travel to far away places very quickly. The wormhole itself is two copies of the black hole geometry connected by a throat. The throat, or passageway, is called an Einstein-Rosen bridge. It has never been proven that wormholes exist, and there is no experimental evidence for them, but it is fun to think about the possibilities their existence might create.

 

مقاله ي فارسي در رابطه با سياه چاله از هوپا:

سياهچاله به زبان ساده
سياهچاله به زبان ساده
اگر تمام کره زمین تا 0.9 سانتیمتر فشرده شود به یک سیاهچاله تبدیل می شود.

 

فرضيه سياهچاله حتي در ميان شگفت انگيزترين پيشرفت هاي اخير اختر فيزيك نظري موقعيت برجسته اي دارد. قرن بيستم زماني بود كه كشفيات خارق العاده در فيزيك و اختر شناسي همواره به كشفيات ديگري كه خارق العاده تر بودند، منجر گرديده است. در عين حال آنها دوره ديگري را در گسترش علوم طبيعي مشخص مي سازند. تعداد كمي از اين كشفيات از نظر جذابيت با فرضيه سياهچاله‌ها قابل قياس هستند. چنين عجيب به نظر مي آيد كه در فضا سوراخ و در سوراخ سياهچاله ها وجود داشته باشند ! طبق نظريه نسبيت عام ، نيروهاي گرانشي از خواص فضا هستند. مسئله قابل توجه فقط اين نيست كه جسمي در فضا وجود دارد بلكه اين جسم مشخص كننده هندسه فضاي اطرافش مي باشد. انيشتين در اين مورد مي گويد: هميشه عقيده بر اين بوده اگر تمام ماده جهان معلوم شود، زمان و فضا باقي مي مانند، در حالي كه نظريه نسبيت تاكيد مي كند كه زمان و فضا نيز همراه با ماده نابود مي گردند. بنابراين ، جرم با فضا ارتباط دارد. هر جسمي باعث مي شود كه فضاي اطرافش انحنا پيدا كند. ما به سختي متوجه چنين انحنايي در زندگي خود مي شويم، زيرا با جرم هاي نسبتا كوچكي سروكار داريم. ولي در ميدان هاي گرانشي بسيار قوي ، مقدار انحنا ممكن است قابل توجه باشد. تعدادي از رويدادهايي كه اخيرا در فضا مشاهده شده اند، نشان مي دهند كه احتمال تمركز مقادير جرم در بخش هاي كوچكي از فضا وجود دارد. اگر ماده اي با جرم معين به اندازه اي متراكم شود كه به حجم كوچكي تبديل گردد و آن حجم براي چنين ماده‌اي بحراني باشد، ماده تحت تاثير گرانش خود شروع به انقباض مي نمايد. با انقباض بيشتر ماده ، فاجعه گرانشي گسترش مي‌يابد و آنچه كه فرو ريختن گرانشي ناميده مي شود، آغاز مي گردد. تمركز ماده در اين فرآيند افزايش مي يابد و طبق نظريه نسبيت ، انحناي فضا نيز به تدريج بيشتر مي گردد.
سرانجام لحظه اي فرا مي رسد كه هيچ پرتوئي از
نور ، ذره و نشانه فيزيكي ديگر نمي تواند از اين قسمت كه دچار فروريختن جرم شده ، خارج گردد. اين جسم به عنوان سياهچاله شناخته شده است. شعاع جسم در حال فرو ريختن كه به يك سياهچاله تبديل مي گردد، شعاع گرانشي ناميده مي شود. اين شعاع براي جرم خورشيد سه كيلومتر و براي جرم زمين 9/0 سانتي متر است.

 اگر خورشيد در اثر انقباض به كره‌اي با شعاع سه كيلومتر تبديل شود، به صورت يك سياهچاله در مي آيد. گرانش در سطح جسمي كه شعاعش با شعاع گرانشي جرم آن برابر مي باشد، فوق‌العاده شديد است. براي غلبه بر نيروي گرانشي لازم است سرعت فرار افزايش يابد، كه مقدار آن بيشتر از سرعت نور مي باشد. طبق نظريه خاص نسبيت كه اكنون قابل قبول است، در جهان هيچ چيز نمي تواند با سرعت بيشتر از سرعت نور حركت كند. به همين دليل سياهچاله ها اجازه نمي دهند هر چيزي از آنها خارج گردد. از سوي ديگر ، سياهچاله مي تواند ماده را از فضاي اطراف به درون خود ببلعد و بزرگتر شود. براي توضيح تمام پديده هايي كه مربوط به سياهچاله مي شوند، فرضيه عام نسبيت لازم مي باشد. بر اساس اين نظريه ، گذشت زمان در ميدان گرانشي قوي آهسته مي باشد. براي ناظري كه در خارج سياهچاله قرار دارد، افتادن يك جسم به درون سياهچاله مدت طولاني متوقف مي گردد. در چنين حالتي ناظر فرضي در ارتبط با عمل انقباض واقعا تصوير كاملا متفاوتي را مشاهده خواهد نمود. ناظر در حالي كه در ظرف مدت محدودي به شعاع گرانشي مي رسد، سقوطش ادامه مي يابد، تا آنكه به مركز سياهچاله برسد. ماده در حال فروريختن ، پس از گذشتن از شعاع گرانش به انقباض ادامه مي دهد. طبق اختر فيزيك نظري جديد ممكن است سياهچاله ها مرحله پاياني زندگي ستارگان جسيم باشند. مادامي كه يك منبع انرژي در ناحيه مركزي ستاره فعاليت مي نمايد، درجات حرارت بالا باعث انبساط گاز و جدا شدن لايه هاي بالائي آن مي شود. در عين حال ، نيروي گرانشي عظيم ستاره اين لايه ها را به سوي مركز مي كشاند. پس از آن كه سوخت تامين كننده واكنش‌هاي هسته‌اي به مصرف رسيد، درجه حرارت در ناحيه مركزي ستاره به تدريج پايين مي آيد. در اين مرحله تعادل ستاره به هم مي خورد و ستاره تحت تاثير نيروي گرانشي خود منقبض مي گردد. تكامل و تغيير بيشتر آن به جرمش بستگي دارد. طبق محاسبات اگر جرم ستاره سه تا پنج برابر جرم خورشيد باشد، مرحله پاياني انقباض آن ممكن است باعث فروريختن گرانشي و تشكيل سياهچاله گردد.

علي پزشكي


...MORE
+

Powered by Mostafa
2010 All rights reserved©



ANASA template